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Norms

The [5 Norm and Sparsity

» The Iy norm is defined by: ||x|jo =#{i: (i) #0}
The sparsity of x is measured by its number of non-zero elements

» The [y norm is defined by: ||x||1 = >; |z ()]
[1 norm as two key properties:

» Robust data fitting
» Sparsity inducing norm

» The Iy norm is defined by: ||x||o = (2, |#(i)]?)/?
lo norm is not effective in measuring sparsity of x
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Why [; Norm Promotes Sparsity?

Given two N-dimensional signals:
@ x; = (1,0,...,0) — ”Spike” signal
@ x, = (1/v/N,1/V/N,...,1/+/N) — ”Comb” signal

@ x; and x, have the same ¢, norm:
[x1]]2 = 1 and [|xz[|2 = 1. (

e
\
@ However, ||x;||; = 1 and X
2l = VN
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[1 Norm in Regression
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@ Linear regression is widely used in science and engineering.

Given AE€ER™" and b&R™ m >n

Find x s.t. b =Ax (overdetermined)
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[1 Norm Regression

Two approaches:
@ Minimize the £, norm of the residuals

min|| b — Ax
mip| I

The £, norm penalizes large residuals
@ Minimizes the £; norm of the residuals

min|| b — Ax
minll b - Ax l;

The £; norm puts much more weight on small residuals
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[1 Norm Regression

Given AER™" and b&R™ m <n

Find x s.t. b=Ax (underdetermined)



Norms

[1 Norm Regression

Two approaches:
@ Minimize the £, norm of x

min||x
minlxll,

@ Minimize the £; norm of x

min||x
min|xll;

subject to

subject to
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Ax=Db

Ax=Db

Let's go to Python!
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Least Absolute Shrinkage and Selection Operator (LASSO)

» LASSO combines shrinking of Ridge regression with
variable selection. Tibshirani 1996.

» Difference between LASSO and Ridge regression is the
penalty used

[ N d d
arg mind Z(?Jz = Z xijwj)Q + A Z w?]
WeR? [i—1 j=0 j=1

[N d d
e T, z<yi—2xijwj>2+xzrwj|]
7=0 j=1

weRd _7;=1
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Least Absolute Shrinkage and Selection Operator (LASSO)

» LASSO coefficients are the solutions to the /1 optimization problem
defined as

[N
wlasso _ arg min Z waw] +)\Z]w]|]
N

= argmin Z i — X! W) +)\Z|wj|]

Li=1 7=0
— argmin (y — Xw)” (y — Xw) + Al wl],].

» LASSO also shrinks the coefficients.

» (1 norm forces coefficients to zero when ) is large: variable selection.
» Lasso yields sparse models, keeping subset of variables.

» Unlike ridge regression, wlasso has no closed form.



Lasso Regression

Standardized Coefficients
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» Lasso performs better when a small number of predictors have strong
coefficients, and the remaining predictors are small.

» Ridge regression performs better when the response is a function of many
predictors.
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The Variable Selection Property of the Lasso

One can show that the Ridge and Lasso regression coefficient estimates solve
the following problems

. N d
widee _ argm“iln{Z(yi — > wijw;)?} (1)
i=1 =0

subject to Z?:o wi <t

N d
W10 = argmin{ 3" (v — 3 wijwj)?) 2)
i=1 =0

subject to Z;-i:o lwj| <t



Lasso Regression ARE FSAN/ELEGS815

v g \‘
] /f Foy
A 1 i Y
/4 v/
wy b4 ~ 7 wy i . b
VA Y/ / /1 W//
/ ’\ ’,,:// /’ ’/IK ot /
i A ¥ //
[ A ey
\.\ o ')// \-_ ’,/.f
Wy Wy

» RSS has elliptical contours, centered at the LS estimate.
» Constraint regions, w? +w3 <t, and |wy|+|wsz| <t. Animation.


https://miro.medium.com/v2/resize:fit:1600/1*_e8BLNA749W_7yxi7hz-DA.gif
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Comparing the Lasso and Ridge Regression
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Simulated data set containing d = 45 predictors and n = 50 observations.
Predictors related to the response.

> Plots of squared bias (black), variance (green), and test MSE (purple) for
the lasso.
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Lasso vs Ridge regression

» y=Xw-+e¢, where X € R40%60 js random Gaussian and € is noise.

» Model given by
w(k)=0(k—5)+0.50(k—12)+0.96(k —31) — 0.756(k — 45)
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Lasso vs Ridge regression

» y=Xw-+e¢, where X € R40%60 js random Gaussian and € is noise.

» Model given by
w(k)=0(k—5)+0.50(k—12)+0.96(k —31) — 0.756(k — 45)
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Lasso hyperparameter optimization
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Validation MSE +/- std error

10! 10° 107! 1072

1073

1074 107°

Optimization of the alpha parameter through GridSearch with

Cross-Validation and Mean Squared Error as the evaluation metric.
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lterative Calculation

» LASSO does not have a closed-form solution. Solved iteratively:

» Coordinate Descent Algorithm

> [terative Soft-Thresholding Algorithm (ISTA)
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Example: Prostate Cancer

» Study by Stamey et al. (1989)

» Examines the correlation between the level of prostate-specific antigen
and a number of clinical measures in men who were about to receive
radical prostatectomy.

| Variable | Unit | Code
Cancer volume log() Icavol
Prostate weight log() lweight
age - age
Amount of benign prostatic || log() lbph
hyperplasia
Seminal Vesicle Invasion - svi
Gleason Score - Gleason
Percentage of Gleason Score || 4 or 5 pgg4d
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Ridge vs Lasso Regression

Ridge Regression

Coefficients

Icavol

2 4 [} 8
tr [X(XTX + AD1XT]

Coeficients
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Lasso Regression

00 02 04

t/ 35 151
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Choosing parameters: cross-validation

» Ridge and Lasso have regularization parameters.
» An optimal parameter needs to be chosen in a principled way

K- fold cross-validation: Split data into K equal (or almost equal)
parts/folds at random.
1. for each value )\; do

2. forj=1,---,K do

3 Fit model on data with fold j removed

4 Test model on remaining fold ;" test error
5 end for

6: Compute average test errors for parameter \;
7. end for

8

. Pick parameter with a smallest average error
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Choosing parameters: cross validation

For A;

j Jpe—
Ye-m
J

|

Aope = argmin(é&y,)
i.j




Example

Cross validation- Example K=5
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» y=Xw-+e¢, where X € R40%60 js random Gaussian and € is noise.

» Oracle model is

w(k) = 6(k—5) +0.56(k — 12) +0.95(k — 31) — 0.756 (k — 45)
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Model selection vs Model assessment

» Model selection: estimate performance of different models in order to
choose the “best" one

» Model assessment: having a chosen model, estimate its prediction error
on new data

» When enough data is available, it is better to separate the data into three
parts: train/validate, and test

» Typically: 50% train, 25 % validate, 25 % test.

» Test data is “kept in a vault", i.e. it is not used to fit or choose the model
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