

FSAN/ELEG815: Statistical Learning Gonzalo Arce

Department of Electrical and Computer Engineering University of Delaware

7: Lasso Regression

The l_2 Norm and Sparsity

The l₀ norm is defined by: ||**x**||₀ = ♯{i : x(i) ≠ 0} The sparsity of **x** is measured by its number of non-zero elements

- ▶ The l_1 norm is defined by: $\|\mathbf{x}\|_1 = \sum_i |x(i)|$ l_1 norm as two key properties:
 - Robust data fitting
 - Sparsity inducing norm

► The l_2 norm is defined by: $\|\mathbf{x}\|_2 = (\sum_i |x(i)|^2)^{1/2}$ l_2 norm is not effective in measuring sparsity of \mathbf{x}

Why l_1 Norm Promotes Sparsity?

Given two N-dimensional signals:

•
$$x_1 = (1, 0, ..., 0) \rightarrow$$
 "Spike" signal
• $x_2 = (1/\sqrt{N}, 1/\sqrt{N}, ..., 1/\sqrt{N}) \rightarrow$ "Comb" signal

- x_1 and x_2 have the same ℓ_2 norm: $||x_1||_2 = 1$ and $||x_2||_2 = 1$.
- However, $||x_1||_1 = 1$ and $||x_2||_1 = \sqrt{N}$.

l_1 Norm in Regression

• Linear regression is widely used in science and engineering.

Given
$$A \in \mathbb{R}^{m \times n}$$
 and $b \in \mathbb{R}^m$; $m > n$
Find x s.t. $b = Ax$ (overdetermined)

l_1 Norm Regression

Two approaches:

• Minimize the l_2 norm of the residuals

 $\min_{\boldsymbol{x}\in R^n} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2$

The l₂ norm penalizes large residuals
Minimizes the l₁ norm of the residuals

 $\min_{\boldsymbol{x}\in R^n} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_1$

The l_1 norm puts much more weight on small residuals

l_1 Norm Regression

Given
$$A \in \mathbb{R}^{m \times n}$$
 and $b \in \mathbb{R}^m$; $m < n$
Find x s.t. $b = Ax$ (underdetermined)

l_1 Norm Regression

Two approaches:

• Minimize the ℓ_2 norm of x

 $\min_{x \in \mathbb{R}^n} \|x\|_2 \quad \text{subject to} \quad Ax = b$

• Minimize the ℓ_1 norm of x

$$\min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{subject to} \quad Ax = b$$

Let's go to Python!

Least Absolute Shrinkage and Selection Operator (LASSO)

- LASSO combines shrinking of Ridge regression with variable selection. Tibshirani 1996.
- Difference between LASSO and Ridge regression is the penalty used

$$\hat{\mathbf{w}}^{\mathsf{ridge}} = \arg\min_{\mathbf{w}\in\mathbb{R}^d} \left[\sum_{i=1}^N (y_i - \sum_{j=0}^d x_{ij}w_j)^2 + \lambda \sum_{j=1}^d w_j^2 \right]$$
$$\hat{\mathbf{w}}^{\mathsf{lasso}} = \arg\min_{\mathbf{w}\in\mathbb{R}^d} \left[\sum_{i=1}^N (y_i - \sum_{j=0}^d x_{ij}w_j)^2 + \lambda \sum_{j=1}^d |w_j| \right]$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Lasso Regression

Least Absolute Shrinkage and Selection Operator (LASSO)

 \blacktriangleright LASSO coefficients are the solutions to the ℓ_1 optimization problem defined as

$$\hat{\mathbf{w}}^{\mathsf{lasso}} = \arg\min_{\mathbf{w}} \left[\sum_{i=1}^{N} (y_i - \sum_{j=1}^{d} x_{ij} w_j)^2 + \lambda \sum_{j=0}^{d} |w_j| \right]$$
$$= \arg\min_{\mathbf{w}} \left[\sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \sum_{j=0}^{d} |w_j| \right]$$
$$= \arg\min_{\mathbf{w}} \left[(\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda ||\mathbf{w}||_1 \right].$$

- LASSO also shrinks the coefficients.
- \triangleright ℓ_1 norm forces coefficients to zero when λ is large: variable selection.
- Lasso yields sparse models, keeping subset of variables.
- Unlike ridge regression, $\hat{\mathbf{w}}_{\lambda}^{lasso}$ has no closed form.

Lasso Regression Example Credit Data set

- Lasso performs better when a small number of predictors have strong coefficients, and the remaining predictors are small.
- Ridge regression performs better when the response is a function of many predictors.

The Variable Selection Property of the Lasso

One can show that the Ridge and Lasso regression coefficient estimates solve the following problems

$$\hat{\mathbf{w}}^{\mathsf{ridge}} = \arg\min_{\mathbf{w}} \{\sum_{i=1}^{N} (y_i - \sum_{j=0}^{d} x_{ij} w_j)^2\}$$
(1)
subject to $\sum_{j=0}^{d} w_j^2 \le t$

$$\hat{\mathbf{w}}^{\mathsf{lasso}} = \arg\min_{\mathbf{w}} \{\sum_{i=1}^{N} (y_i - \sum_{j=0}^{d} x_{ij} w_j)^2\}$$
(2)
subject to $\sum_{j=0}^{d} |w_j| \le t$

The Variable Selection Property of the Lasso

▶ *RSS* has elliptical contours, centered at the *LS* estimate.

• Constraint regions, $w_1^2 + w_2^2 \le t$, and $|w_1| + |w_2| \le t$. Animation.

Comparing the Lasso and Ridge Regression

Simulated data set containing d = 45 predictors and n = 50 observations. Predictors related to the response.

Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso.

Lasso vs Ridge regression

- ▶ $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}$, where $\mathbf{X} \in \mathbb{R}^{40 \times 60}$ is random Gaussian and $\boldsymbol{\epsilon}$ is noise.
- Model given by $w(k) = \delta(k-5) + 0.5\delta(k-12) + 0.9\delta(k-31) 0.75\delta(k-45)$

Lasso vs Ridge regression

- ▶ $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}$, where $\mathbf{X} \in \mathbb{R}^{40 \times 60}$ is random Gaussian and $\boldsymbol{\epsilon}$ is noise.
- Model given by $w(k) = \delta(k-5) + 0.5\delta(k-12) + 0.9\delta(k-31) 0.75\delta(k-45)$

Lasso hyperparameter optimization

Optimization of the alpha parameter through GridSearch with Cross-Validation and Mean Squared Error as the evaluation metric.

Iterative Calculation

► LASSO does not have a closed-form solution. Solved iteratively:

- Coordinate Descent Algorithm
- Iterative Soft-Thresholding Algorithm (ISTA)

Example: Prostate Cancer

- ► Study by Stamey et al. (1989)
- Examines the correlation between the level of prostate-specific antigen and a number of clinical measures in men who were about to receive radical prostatectomy.

Variable	Unit	Code
Cancer volume	log()	lcavol
Prostate weight	log()	lweight
age	-	age
Amount of benign prostatic	log()	lbph
hyperplasia		
Seminal Vesicle Invasion	-	svi
Gleason Score	-	Gleason
Percentage of Gleason Score	4 or 5	pgg45

Ridge vs Lasso Regression

Choosing parameters: cross-validation

- Ridge and Lasso have regularization parameters.
- ► An optimal parameter needs to be chosen in a principled way

K- fold cross-validation: Split data into K equal (or almost equal) parts/folds at random.

- 1: for each value λ_i do
- 2: for $j = 1, \cdots, K$ do
- $_{3:}$ Fit model on data with fold j removed
- 4: Test model on remaining fold j^{th} test error
- 5: end for
- 6: Compute average test errors for parameter λ_i
- 7: end for
- 8: Pick parameter with a smallest average error

Choosing parameters: cross validation

Cross validation- Example K=5

- **v** = **Xw** + ϵ , where **X** $\in \mathbb{R}^{40 \times 60}$ is random Gaussian and ϵ is noise.
- Oracle model is

 $w(k) = \delta(k-5) + 0.5\delta(k-12) + 0.9\delta(k-31) - 0.75\delta(k-45)$

Model selection vs Model assessment

- Model selection: estimate performance of different models in order to choose the "best" one
- Model assessment: having a chosen model, estimate its prediction error on new data
- When enough data is available, it is better to separate the data into three parts: train/validate, and test
- ► Typically: 50% train, 25 % validate, 25 % test.
- ▶ Test data is "kept in a vault", i.e. it is not used to fit or choose the model